Nematic twist-bend phase with nanoscale modulation of molecular orientation
نویسندگان
چکیده
A state of matter in which molecules show a long-range orientational order and no positional order is called a nematic liquid crystal. The best known and most widely used (for example, in modern displays) is the uniaxial nematic, with the rod-like molecules aligned along a single axis, called the director. When the molecules are chiral, the director twists in space, drawing a right-angle helicoid and remaining perpendicular to the helix axis; the structure is called a chiral nematic. Here using transmission electron and optical microscopy, we experimentally demonstrate a new nematic order, formed by achiral molecules, in which the director follows an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing twist and bend. The oblique helicoids have a nanoscale pitch. The new twist-bend nematic represents a structural link between the uniaxial nematic (no tilt) and a chiral nematic (helicoids with right-angle tilt).
منابع مشابه
Resonant Carbon K-Edge Soft X-Ray Scattering from Lattice-Free Heliconical Molecular Ordering: Soft Dilative Elasticity of the Twist-Bend Liquid Crystal Phase.
Resonant x-ray scattering shows that the bulk structure of the twist-bend liquid crystal phase, recently discovered in bent molecular dimers, has spatial periodicity without electron density modulation, indicating a lattice-free heliconical nematic precession of orientation that has helical glide symmetry. In situ study of the bulk helix texture of the dimer CB7CB shows an elastically confined ...
متن کاملEnantiotopic discrimination and director organization in the twist-bend nematic phase.
Extending a molecular field model for the orientational order in the nematic phase, we calculate the (2)H-NMR splittings for the achiral solute 8CB-d2 in the twist-bend nematic phase formed by the achiral liquid crystal dimer CB7CB. We give an explanation for the enantiotopic discrimination observed in the spectra and comparison with experimental data allows us to provide quantitative estimates...
متن کاملChiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers.
Freeze-fracture transmission electron microscopy study of the nanoscale structure of the so-called "twist-bend" nematic phase of the cyanobiphenyl (CB) dimer molecule CB(CH2)7CB reveals stripe-textured fracture planes that indicate fluid layers periodically arrayed in the bulk with a spacing of d ~ 8.3 nm. Fluidity and a rigorously maintained spacing result in long-range-ordered 3D focal conic ...
متن کاملThe dependency of twist-bend nematic liquid crystals on molecular structure: a progression from dimers to trimers, oligomers and polymers.
This article gives an overview on recent developments concerning the twist-bend nematic phase. The twist-bend nematic phase has been discussed as the missing link between the uniaxial nematic mesophase (N) and the helical chiral nematic phase (N*). After an introduction discussing the key physical properties of the NTB phase and the methods used to identify the twist-bend nematic mesophase this...
متن کاملMolecular organization in the twist-bend nematic phase by resonant X-ray scattering at the Se K-edge and by SAXS, WAXS and GIXRD.
Using a magnetically aligned liquid crystal mixture containing a novel Se-labelled dimer and the difluoroterphenyl dimer DTC5C7, the twist-bend nematic phase (Ntb) was studied by the resonant scattering of hard X-rays and by conventional small and wide-angle X-ray scattering (SAXS, WAXS). Resonant diffraction spots indicated a helix with a 9-12 nm pitch in the Ntb phase and an unprecedentedly h...
متن کامل